Happiness and Choice Models

Maya Abou Zeid

Discrete Choice Analysis Workshop EPFL, Lausanne April 21, 2016

Some Interesting Questions

- What is subjective well-being (SWB) or happiness? Why is it relevant?
- How can happiness be measured?
- What influences happiness? Does it change over time?
- Can happiness data be used to improve random utility models?

Appendices

- Appendix 1: SWB measurement issues
- Appendix 2: SWB modeling issues
- Appendix 3: SWB and valuation

What Is Subjective Well-Being and Why Is It Relevant?

Well-Being

- Well-being includes both objective and subjective components
- Objective:
 - GDP per capita, poverty, unemployment levels, infant mortality, life expectancy, education, crime, air quality, ...
- Subjective:
 - How people evaluate their lives from their own perspectives → focus of this presentation

Subjective Well-Being Assessment Example: World Values Survey

- Taking all things together, would you say you are:
 - Very happy
 - Rather happy
 - Not very happy
 - Not at all happy

Lots of Interest in Measuring SWB

- British Household Panel Survey
- German Socio-Economic Panel
- Eurobarometer
- US General Social Survey
- Gallup
- And many national surveys

And in Monitoring SWB

- Kahneman et al. (2004)
 - The goal of public policy is <u>not to maximize measured GDP</u>, so a better measure of wellbeing could help to inform policy. Here we propose <u>measuring national well-being</u> by weighting the time allocated to various activities by the subjective experiences associated with those activities.
- Bhutan: Gross National Happiness (GNH)

Source: Center for Bhutan Studies & GNH Research (2015)

Why Is SWB Relevant? (Layard, 2010; OECD, 2013)

- Intrinsic value of SWB and correlation with human functioning (marriage, income, health,...)
- Monitoring of trends
- Identification of problem groups in the population
- Understanding the drivers of SWB and how people make decisions
- Guiding policy and complementing other outcome measures (such as GDP) as a measure of progress

Example: SWB and GDP Trends in Egypt

Trends in subjective well-being and GDP in Egypt: 2005-10

Recent trends in percentage "thriving" and GDP per capita (PPP)

Source: Subjective well-being data are from Gallup. GDP per capita (PPP) estimates are from the International Monetary Fund's World Economic Outlook Database.

Source: OECD (2013)

Components of Subjective Well-Being (SWB)

- Cognitive/evaluative (long term)
 - Satisfaction with life and with life domains
- Affective (short term)
 - Presence of positive feelings
 - Absence of negative feelings
- Eudaimonic
 - Purpose in and meaning of life, personal growth and flourishing

How Can SWB Be Measured?

Life and Domain Satisfaction

- Most surveys use a single-item measure
- Example: World Values Survey
 - Overall satisfaction question

All things considered, how satisfied are you with your life as a whole these days?

1(completely dissatisfied) --- 10 (completely satisfied)

• Can ask similar questions for specific domains of life (job, income, marital, etc.)

Affect

- Affect is multi-dimensional
 - Positive and negative affect
 - Valence vs. Arousal
- Circumplex model of affect (Russell, 1980)

Affect Circumplex Model

Affect

Example: Day Reconstruction Method (Kahneman et al., 2004)

How did you *feel* during this episode?

Please rate each feeling on the scale given. A rating of 0 means that you did not experience that feeling at all. A rating of 6 means that this feeling was a very important part of the experience. Please circle the number between 0 and 6 that best describes how you felt.

	Not	at a	11		Ve	ry m	luch
Нарру	0	1	2	3	4	5	6
Frustrated/annoyed	0	1	2	3	4	5	6
Depressed/blue	0	1	2	3	4	5	6
Hassled/pushed around	0	1	2	3	4	5	6
Warm/friendly	0	1	2	3	4	5	6
Angry/hostile	0	1	2	3	4	5	6
Worried/anxious	0	1	2	3	4	5	6
Enjoying myself	0	1	2	3	4	5	6
Tired	0	1	2	3	4	5	6

Eudaimonic Well-Being

- Overall measure (Office for National Statistics, UK):
 - Overall, to what extent do you feel the things you do in your life are worthwhile?

0 (not at all worthwhile) --- 10 (completely worthwhile)

• Other multi-item measures exist (e.g. Ryff, 1989)

Types of Measurement Methods

- Psychological self-reported
 - Retrospective
 - Real-time
- Physiological
 - Facial
 - Autonomic
 - Brain

Psychological Measures Self-Reports

- Retrospective (most common)
 - Household surveys, satisfaction surveys, etc.

+

- Relatively easy to collect data
- Memory and aggregation bias
- Neglect of duration
- Assume that respondents are *able* and *willing* to provide subjective well-being measures

Psychological Measures (cont.) Self-Reports

- Real-time
 - Often associated with time use surveys
 - Experience Sampling Method (ESM), Day Reconstruction Method (DRM – close to real-time)
 - +
- Less recall bias
- Can associate SWB with particular activities or contexts
- Can be intrusive and more demanding
- Difficult to capture infrequent activities
- Assume that respondents are *able* and *willing* to provide subjective well-being measures

Physiological Measures

Detect emotions from facial expressions, brain activity, or physiological reactions (heart rate, respiration, ...)

Physiological Measures (cont.)

+

- Continuous measurement
- Useful to the extent that physiological reactions convey emotions
- Excessive data processing
- Muscle movements might reflect biological processes
- Cannot be used alone to infer the presence of emotions
- Can be intrusive

Which Method to Use?

- Self-report survey based measures remain the most popular
 - Empirical evidence for their validity
 - But there are several measurement issues to be careful about
- Collect multiple indicators where possible (including physiological)

Causes and Correlates of SWB

SWB Determinants

Demographic variables and personality (extraversion, neuroticism)
Effect of age

on happiness (www.telegraph.co.uk)

- Socio-economic, life events, and lifestyle variables
 - E.g. income, unemployment, marriage, disability, time use
- Comparison processes
- Adaptation and aspirations

Time Use

• Significant variation by activity type

Activity	Percentage of sample	Time spent (hours)	Net affect	
Intimate relations	12	0.23	4.83	
Socializing after work	49	1.14	4.15	
Relaxing	77	2.17	3.96	
Dinner	69	0.81	3.94	
Lunch	67	0.57	3.91	
Exercising	16	0.22	3.85	
Praying/worship	23	0.45	3.78	
Socializing at work	41	1.12	3.78	
Watching TV	75	2.19	3.65	
Phone at home	43	0.93	3.52	
Napping	43	0.89	3.35	
Cooking	63	1.15	3.27	
Shopping	30	0.41	3.23	
Computer (non-work)	29	0.51	3.22	
Housework	49	1.12	2.99	
Childcare	36	1.10	2.99	
Evening commute	63	0.61	2.77	
Working	100	6.89	2.68	
Morning commute	68	0.47	2.09	

<u>Source</u>: Kahneman and Krueger (2006) – for a sample of employed women in Texas

Comparison Processes

(Schwarz and Strack, 1999)

- Comparison to self
- Comparison to others
 - Social media: "People feel depressed after spending a great deal of time on Facebook because they feel badly when comparing themselves to others" (Steers et al., 2014)
 - Relative income
 - Commute mode to work
 - Challenging to know which reference group to use
- Counterfactuals

Adaptation

(Brickman and Campbell, 1971; Brickman et al., 1978)

- Evidence that people quickly adapt to life events and changes in well-being subside with time
 - Lottery winners, paraplegics / disability, marriage, bereavement
 - Reasons include shift in attention, change in aspirations, and substitution of activities
- This process has been called the *hedonic treadmill*

Adaptation (cont.) Example of Hedonic Treadmill

Average Life Satisfaction for a Sample of German Women

(by year of marriage t = 0)

Source: Clark, Diener, Georgellis and Lucas (2003), using data from the German Socioeconomic Panel. *Note:* An asterisk indicates that life satisfaction is significantly different from the baseline level.

Source: Kahneman and Krueger (2006)

Happiness and Utility

Random Utility Models

- Origins in consumer theory
- Behavioral foundations of discrete choice models
 - Rationality and utility maximization

Happiness and Utility

Historical Perspective

Bentham (1789)

Classical era:

Utility as the experiences of pleasure and pain

Neoclassical era:

Preferences inferred from choices

Kahneman (1997, 2000)

Modern behavioral revaluation:

- Decision utility (modern usage)
- Experienced utility (Bentham's usage)

Kahneman's Notions of Utility

- Example: immersing hands in cold water (Kahneman et al., 1993)
 - Experiment 1: 60 sec at 14 C (57.2 F)
 - Experiment 2: 60 sec at 14 C + 30 sec at 15 C (59 F)
- Moment utility: real-time discomfort

Kahneman's Notions of Utility (cont.)

Remembered utility

- Retrospective evaluation of experience
- Determined by selected moment utilities (peak-end rule / duration neglect)
 - E.g. most participants judged the longer experiment as less painful overall

Decision utility

- Includes affective forecast
- Experiences remembered more favorably are more likely to be repeated
 - E.g. most participants chose to repeat the longer experiment

Is Happiness the Same as Utility?

- Happiness, broadly defined as satisfaction with all aspects of an experience, can be interpreted as utility
- Happiness is a way to measure utility and increase model efficiency
- However, a distinction needs to be made among the different types of utility (in a dynamic context)

Happiness and Utility: Static Framework
Random Utility Model

For alternative *i*:

Choice model

 $U_{i} = V(X_{i}) + \varepsilon_{i}$ $y_{i} = \begin{cases} 1 & \text{if } U_{i} \ge U_{j} \quad \forall j \neq i \\ 0 & \text{otherwise} \end{cases}$

Extended Random Utility Model

For alternative *i*:

Choice model

 $U_{i} = V(X_{i}) + \varepsilon_{i}$ $y_{i} = \begin{cases} 1 & \text{if } U_{i} \ge U_{j} \quad \forall j \neq i \\ 0 & \text{otherwise} \end{cases}$

Happiness model

$$h_i = h(U_i) + v_i$$

Extended Random Utility Model

- Expected gain in efficiency of model estimates
- Expected decrease in the fit of the choice model
- Happiness indicators are used at estimation stage only, and only the choice model is used in application

• Denver activity-based model

- Activity pattern defined as number of home-based tours (0 or 1+) by purpose and number of secondary stops (0 or 1+) by purpose made on a given day
 - 7 purposes modeled
 - Choice set: activity 2080 patterns
 - Example of a pattern: 1+ work tour, 1+ shopping tour, 1+ escort stops

Measures (Abou-Zeid and Ben-Akiva, 2012)

- Added happiness measures as indicators of the activity pattern utility in an activity-based model (Denver)
- Measures:
 - h: Well-being for the chosen pattern (7-point scale)
 - Thinking about yesterday, how satisfied were you overall with the way you traveled, the places you went to (including staying at home), and the things you did at these places?
 - E: Deviation of the chosen pattern from plans
 - Did you change your travel and activity plans as the day progressed? (Yes/No)

Modeling Framework Explanatory Variables X Disturbance Pattern Utility U Choice **Happiness Indicator** V (chosen pattern only)

For alternative *i*:

Choice model

 $U_{i} = V(X_{i}) + \varepsilon_{i}$ $y_{i} = \begin{cases} 1 & \text{if } U_{i} \ge U_{j} \quad \forall j \neq i \\ 0 & \text{otherwise} \end{cases}$ Happiness model $h_i = h(U_i) + v_i$, for *i* such that : $y_i = 1$ and $E_i = N_0$

h

Model Performance (Carrion et al., 2015)

Measure	Extended Model (Choice + Happiness)	Standard Model (Choice Only: Logit)	Standard Model (Choice Only: Error Component Logit)
Choice log likelihood	-62,548.26	-56,243.36	-56,744.21
$Var(\beta_{\text{standard}}) - Var(\beta_{\text{extended}})$	na	Not positive-definite	Not positive-definite
Trace $(Var(\beta))$	20,540	51,021.9	26,338.5
$ Var(\beta) $	2.382 E+78	3.279 E+86	2.618 E+80

NOTE: na = not applicable.

- Gain in efficiency in the model estimates of the activity pattern model with happiness indicators (smaller trace and determinant of the var-cov matrix of model parameters)
- Significant loss in goodness of fit of the choice model indicating potential overfitting of original model

Happiness and Utility: Dynamic Framework

Happiness and Dynamic Behavior

- Behavior is dynamic and utility changes over time
- Happiness indicators can capture changes in utility and enhance dynamic modeling of behavior

Dynamic Modeling Framework

(Abou-Zeid and Ben-Akiva, 2010)

(Abou-Zeid et al., 2012)

- <u>Hypothesis</u>: people don't fully consider their travel well-being unless they evaluate their options and reconsider their decisions
- Experiment: habitual car drivers commuted by public transport (PT) for 2-3 days in Switzerland and MIT (treatment)
- <u>Measures</u>: car satisfaction pre- and post-treatment and PT satisfaction post-treatment
 - Taking all things together, how satisfied are you with your commute by car between your residence and work?

Application 2: Mode Choice Measurement Results (Switzerland)

The pre- and post-treatment satisfaction ratings are significantly different at the 90% level of confidence.

Measurement Results (Switzerland)

Treadmill effect

- t₀ and t₁: significantly different
- t₁ and t₃: significantly different
- t₀ and t₃: not significantly different

Application 2: Mode Choice Modeling Framework

Pre-Treatment

Post-Treatment

Application 2: Mode Choice Structural Equations

Pre-treatment car utility

$$U_{\text{Car}}^{0} = V_{\text{Car}}^{0} + \varepsilon_{\text{Car}}^{0} = \beta_{0} + \beta_{1} * \text{Time}_{\text{Car}} + \beta_{2} * \text{Cost}_{\text{Car}} / \text{income} + \varepsilon_{\text{Car}}^{0}$$

Post-treatment car utility

$$U_{\text{Car}} = V_{\text{Car}} + \varepsilon_{\text{Car}} = \beta_{3} + \beta_{1} * \text{Time}_{\text{Car}} + \beta_{2} * \text{Cost}_{\text{Car}} / \text{income} + \varepsilon_{\text{Car}}$$

Post-treatment PT utility

$$U_{\rm PT} = V_{\rm PT} + \varepsilon_{\rm PT} = \beta_1 * {\rm Time}_{\rm PT} + \beta_2 * {\rm Cost}_{\rm PT} / {\rm income} + \varepsilon_{\rm PT}$$

$$\begin{bmatrix} \varepsilon_{Car}^{0} \\ \varepsilon_{Car} \\ \varepsilon_{PT} \end{bmatrix} \sim N \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & \rho_{c} & \rho_{b} \\ \rho_{c} & 1 & \rho_{a} \\ \rho_{b} & \rho_{a} & 1 \end{bmatrix} \end{pmatrix}$$

Application 2: Mode Choice Measurement Equations

Choice

$$y = \begin{cases} 1 \text{ (Car)} & \text{if } U_{\text{Car}} - U_{\text{PT}} + \eta \ge 0, \quad \eta \sim \text{Logistic}(0,1) \\ 0 \text{ (PT)} & \text{otherwise} \end{cases}$$

Pre-treatment car happiness

$$h_{\rm Car}^{*0} = \lambda_1 U_{\rm Car}^0 + \upsilon_1$$

Post-treatment car happiness

$$h_{\rm Car}^* = \lambda_2 U_{\rm Car} + \upsilon_2$$

Post-treatment PT happiness

$$h_{\rm PT}^* = \lambda_3 U_{\rm PT} + \upsilon_3$$
$$\upsilon_1, \upsilon_2, \upsilon_3 \sim {\rm Logistic}(0,1)$$

$$h = \begin{cases} 1 & \text{if } \tau_0 < h^* \le \tau_1 \\ 2 & \text{if } \tau_1 < h^* \le \tau_2 \\ 3 & \text{if } \tau_2 < h^* \le \tau_3 \\ 4 & \text{if } \tau_3 < h^* \le \tau_4 \\ 5 & \text{if } \tau_4 < h^* < \tau_5 \\ \tau_0 = -\infty, \tau_5 = +\infty \end{cases}$$

Application 2: Mode Choice Likelihood Function

 $P_{n} = \int_{\mathcal{E}_{\text{PT}}} \int_{\mathcal{E}_{\text{Car}}} \int_{\mathcal{E}_{\text{Car}}} \left(\frac{A(y|\mathcal{E}_{\text{Car}}, \mathcal{E}_{\text{PT}})P(h_{\text{Car}}^{0}|\mathcal{E}_{\text{Car}}^{0})P(h_{\text{Car}}|\mathcal{E}_{\text{Car}})P(h_{\text{PT}}|\mathcal{E}_{\text{PT}})}{f(\mathcal{E}_{\text{Car}}^{0}, \mathcal{E}_{\text{Car}}, \mathcal{E}_{\text{PT}})d\mathcal{E}_{\text{Car}}^{0}d\mathcal{E}_{\text{Car}}d\mathcal{E}_{\text{PT}}} \right)$

Estimation Results (MIT)

Parameter	Parameter Estimates	Std Error	t-stat
Car constant	0.799	0.313	2.55
In Time (minutes)	-0.568	0.211	-2.70
Cost/income (\$ per month/\$1000)	-1.31	0.679	-1.93
$ ho_c$	1.00 (fixed)	-	-
$\rho_b = \rho_a$	-0.0644	0.155	-0.41

Cost was found to affect the choice only, but not the happiness judgments

Estimation Results (MIT)

Daramatar	Parameter	Std	t stat
Parameter	Estimates	EITO	l-Slal
Pre-Treatment Car Happiness			
λ_1	4.34	0.903	4.81
Post-Treatment Car Happiness			
λ_2	3.55	0.724	4.91
Post-Treatment PT Happiness			
λ_3	3.00	0.697	4.30
Thresholds			
τ_1	-12.7	3.09	-4.10
$ au_2$	-9.04	2.83	-3.19
τ ₃	-4.55	2.64	-1.72
τ_4	-0.356	2.58	-0.14

55

Extended Vs. Standard Model

	Extended (Choice + Happiness)		Standard (Choice only - logit)	
Parameter	Parameter Estimates Std Error		Parameter Estimates	Std Error
Car constant	0.799	0.313	1.24	0.735
ln Time (minutes)	-0.568	0.211	-0.648	1.24
Cost/income (\$ per month/\$1000)	-1.31	0.679	-2.03	0.803

- Three criteria:
 - Goodness-of-fit, efficiency, consistency

Application 2: Mode Choice Goodness-of-Fit

	Extended (Choice + Happiness)	Standard (Choice only)
Choice Log- Likelihood	-35.4	-32.6

• Choice-only model fits the data better

Application 2: Mode Choice Efficiency

• Choice + happiness model is more efficient

Application 2: Mode Choice Consistency

- Two estimators: extended versus standard model
- Hausman specification test:
 - Under the null hypothesis, both are consistent, but the extended model parameter estimators are more efficient
- Applying Hausman test to MIT experiment results in accepting the null hypothesis at the 90% level of confidence

Application 3: Real-Time Measurement Using Smartphones

- Future Mobility Sensing (FMS) smartphone app and web validation tool (Cottrill et al., 2013)
 - Tracks activities and travel and detects travel modes
- Web validation tool
 - User validates the detected trajectory and inputs further info (trip purpose, travel company, etc.)
- <u>https://happymobility.org/</u>

FMS Framework

FMS Web Validation Interface

FMS Real-Time Happiness Question

• User responds to a happiness question, activated at a random time during the day.

●●●●● StarHub 令 2:56 p	om 🛛 🕈 🖉 🖇 71% 🔲 🔿	•••• Singtel 🗢 4:48 PM	イ ∦ 59% ■ +	●●●●● StarHub 😤	2:58 pm	7 🖸 💲 70% 🥅
္သြို YOUR HAPPI	NESS LEVEL	දිරිූි HAPPINESS SU	RVEY	< CUR	RENT ACT	VITY
		How happy are you with activity?	your current	Home	Shopping	CC Pick up/
Very Happy	Happy		Very happy	D Work	رب Traveling	☆☆ Social
	(1)		Neutral	Q Change	D+ Work-rel	Education
Neutral	Unhappy			举 Recreation	Hedical/	۳ ۱ Meal/Eat
Very Unhappy		⊗ —	Very Unhappy	Entertain	Sports/E	Rersonal
Today Happin	ess Diary	Today Happiness Dia	ary Bus Survey	Today	Happiness	Diary

FMS Retrospective Happiness Question

• User also is presented with a retrospective happiness question while verifying the activity diary.

Data Collection

- 737 real-time happiness answers
- 147 retrospective happiness answers
 - 54% verified within 2 days
 - 26% verified between 3 and 7 days
 - 20% verified after a week

Real-Time Vs. Retrospective Happiness (Raveau et al., 2016)

(First Pilot Survey)

Very Unhappy	1		2		
Unhappy		2	6		
Neutral		1	16	6	2
Нарру			10	9	3
Very Happy	1		2	2	3
	Very Unhappy	Unhappy	Neutral	Нарру	Very Happy

Real-Time

Retrospective

Real-Time Vs. Retrospective Happiness

• Hedonic Treadmill Effect: happiness tends to return to a stable level as time passes.

Happiness	Real-Time	Retrospective
Very Unhappy	5%	3%
Unhappy	12%	5%
Neutral	38%	55%
Нарру	33%	26%
Very Happy	12%	12%

Modeling Happiness (Ordinal Logit)

Variables	Variable Type	Real-Time Happiness	Retrospective Happiness
Home Activity	Binary	0	0
Work Activity	Binary	-1.93 × 10 ⁻¹	-1.93×10^{-1}
Education Activity on Weekday	Binary	-1.01×10^{-1}	-1.01×10^{-1}
Education Activity on Weekend	Binary	-3.78 × 10 ⁻¹	-3.78 × 10 ⁻¹
Other Activity	Binary	5.42×10^{-1}	5.42 × 10 ⁻¹
Women	Binary	0	1.27 × 10 ⁻¹
Men	Binary	1.04×10^{-1}	0
(Education/Work Activity Duration)	Continuous	-1.82 × 10 ⁻²	-6.72 × 10 ^{-3 *}
(Education/Work Activity Duration) ²	Continuous	-6.91 × 10 ⁻³	-2.12 × 10 ^{-3 *}
(Other Activity Duration)	Continuous	2.76 × 10 ⁻²	3.40×10^{-3} *
(Other Activity Duration) ²	Continuous	5.75 × 10 ⁻³	1.45 × 10 ^{-3 *}
Panel Effect (Mean)	Binary	1.52 × 10 ^{-1 *}	1.52×10^{-1} *
Panel Effect (Std. Dev)	-	2.01×10^{-2} *	2.01 × 10 ^{-2 *}

Modeling Happiness Main Findings

- Activity type:
 - Compared to staying at home, performing work and education activities tends to result in lower levels of happiness.
 - Compared to staying at home, performing other activities tends to result in higher levels of happiness.
- Day of week:
 - Performing education activities on weekends instead of weekdays leads to lower levels of happiness.

Modeling Happiness Main Findings

- Socio-demographics:
 - Men tend to report higher levels of happiness in real-time, but women tend to report higher levels of happiness retrospectively.
- Activity duration:
 - Activity duration has a more significant effect on real-time happiness than on retrospective happiness.
 - Longer work and education activity duration has a negative impact on happiness
 - Longer duration of other activities has a positive impact on happiness.

Issues

- Verification rates
- Capturing particular activities like travel
- Customizing the survey for different individuals (start and end time of time window for happiness question)
- Self-selection

Conclusion
SWB Measures Are Valid

- Evidence for the validity of SWB measures due to their correlation with (Layard, 2010):
 - Reports of friends
 - Causes of well-being (physical health, family status, employment, income, age)
 - Effects of well-being and correlation with behavior (job, marriage, etc.)
 - Physical functioning (salivary cortisol, blood pressure, heart rate, immunity)
 - Brain activity

And They Are Useful

- SWB indicators are useful:
 - As indicators of social progress
 - For measuring utility and capturing dynamics in behavior
 - For guiding public policy and valuation of nonmarket goods
- But need to handle carefully a number of measurement and modeling issues

Measurement Issues

- Question construction
 - Wording and length of reference period
- Response scale
 - Length, labeling, and unipolar vs. bipolar measures
- Question context and order
- Survey source and introductory text
- Wider survey context

Modeling Issues

- Omitted variables
- Reverse and two-way causality
- Adaptation
- Comparison / reference points
- Interpersonal comparisons of SWB data and cultural differences

References

- Abou-Zeid, M. and Ben-Akiva, M. (2010) "A Model of Travel Happiness and Mode Switching", in *Choice Modelling: the State-of-the-Art and the State-of-Practice, Proceedings from the Inaugural International Choice Modelling Conference*, Hess, S. and Daly, A. (eds.), Emerald, pp. 289-305.
- Abou-Zeid, M. and Ben-Akiva, M. (2011) "The Effect of Social Comparisons on Commute Well-Being", *Transportation Research Part A*, Vol. 45, No. 4, pp. 345-361.
- Abou-Zeid, M. and Ben-Akiva, M. (2012) "Well-Being and Activity-Based Models", *Transportation*, Vol. 39, No. 6, pp. 1189-1207.
- Abou-Zeid, M., Witter, R., Bierlaire, M., Kaufmann, V., and Ben-Akiva, M. (2012) "Happiness and Travel Mode Switching: Findings from a Swiss Public Transportation Experiment", *Transport Policy*, Vol. 19, No. 1, pp. 93-104.
- Bentham, J. (1789) *An Introduction to the Principle of Morals and Legislations*, reprinted (Blackwell, Oxford, United Kingdom, 1948).
- Brickman, P. and Campbell, D. T. (1971) "Hedonic Relativism and Planning the Good Society", in Adaptation Level Theory: A Symposium, M. H. Appley (ed.), Academic Press, New York, pp. 287-302.
- Brickman, P., Coates, D., and Janoff-Bulman, R. (1978) "Lottery Winners and Accident Victims: Is Happiness Relative?" *Journal of Personality and Social Psychology*, Vol. 37, pp. 917-927.

References (cont.)

- Carrion, C., Enam, A., Pattabhiraman, V., Abou-Zeid, M., and Ben-Akiva, M. (2015) "Activity Pattern Models with Well-Being Indicators", *Transportation Research Record: Journal of the Transportation Research Board*, No. 2493, pp. 58-69.
- Center for Bhutan Studies & GNH Research (2015) "Bhutan's 2015 Gross National Happiness Index". Available online: <u>http://www.grossnationalhappiness.com/</u>
- Cottrill, C., Pereira, F. C., Zhao, F., Dias, I., Lim, H.B., Ben-Akiva, M., and Zegras, C. (2013) "The Future Mobility Survey: Experiences in Developing a Smartphone-based Travel Survey in Singapore", *Transportation Research Record: Journal of the Transportation Research Board*, No. 2354, pp. 59-67.
- Dolan, P. and Metcalfe, R. (2008) "Comparing Willingness-to-Pay and Subjective Well-Being in the Context of Non-Market Goods", The London School of Economics and Political Science, Centre for Economic Performance, CEP Discussion Paper No. 890.
- Kahneman, D. (2000) "Experienced Utility and Objective Happiness: A Moment-Based Approach", in *Choices, Values, and Frames*, D. Kahneman and A. Tversky (eds.), Cambridge University Press, New York, pp. 673-692.
- Kahneman, D., Fredrickson, B., Schreiber, C. M., and Redelmeier, D. (1993) "When More Pain Is Preferred to Less: Adding a Better End", *Psychological Science*, Vol. 4, No. 6, pp. 401-405.
- Kahneman, D. and Krueger, A. B. (2006) "Developments in the Measurement of Subjective Well-Being", *The Journal of Economic Perspectives*, Vol. 20, No. 1, pp. 3-24.

References (cont.)

- Kahneman, D., Krueger, A. B., Schkade, D., Schwarz, N., and Stone, A. (2004) "A Survey Method for Characterizing Daily Life Experience: The Day Reconstruction Method", *Science* (December 3, 2004), pp. 1776-1780.
- Kahneman, D., Krueger, A. B., Schkade, D., Schwarz, N., and Stone, A. (2004) "Toward National Well-Being Accounts", *American Economic Review*, Vol. 94, No. 2, pp. 429-434.
- Kahneman, D., Wakker, P. P., and Sarin, R. (1997) "Back to Bentham? Explorations of Experienced Utility", *The Quarterly Journal of Economics*, Vol. 112, No. 2, pp. 375-405.
- Layard, R. (2010) "Measuring Subjective Well-Being", Science, Vol. 327, No. 5965, pp. 534-535.
- OECD (2013) OECD Guidelines on Measuring Subjective Well-Being, OECD Publishing.
- Raveau, S., Ghorpade, A., Zhao, F., Abou-Zeid, M., Zegras, C., and Ben-Akiva, M. (2016) "Smartphone-Based Survey for Real-Time and Retrospective Happiness Related to Travel and Activities", forthcoming in *Transportation Research Record: Journal of the Transportation Research Board*, No. 2566. DOI 10.3141/2566-11.
- Russell, J. A. (1980) "A Circumplex Model of Affect", *Journal of Personality and Social Psychology*, Vol. 39, No. 6, pp. 1161-1178.
- Ryff, C. D. (1989) "Happiness Is Everything, or Is It? Explorations on the Meaning of Psychological Well-Being", *Journal of Personality and Social Psychology*, Vol. 57, No. 6, pp. 1069-1081.

References (cont.)

- Schwarz, N. and Strack, F. (1999) "Reports of Subjective Well-Being: Judgmental Processes and Their Methodological Implications", in *Well-Being: the Foundations of Hedonic Psychology*, D. Kahneman, E. Diener, and N. Schwarz (eds.), Russell Sage, New York, pp. 61-84.
- Schwarz, N., Strack, F., and Mai, H.-P. (1991) "Assimilation and Contrast Effects in Part-Whole Questions Sequences: A Conversational Logic Analysis", *The Public Opinion Quarterly*, Vol. 55, No. 1, pp. 3-23.

Appendix 1: SWB Measurement Issues (see OECD, 2013)

Measurement Issues

- Question construction
 - Wording and length of reference period
- Response scale
 - Length, labeling, and unipolar vs. bipolar measures
- Question context and order
- Survey source and introductory text
- Wider survey context

Some Suggestions

- Use multiple-item scales where possible to reduce the impact of variation in how respondents understand SWB questions
- 2. Reference period:
 - For satisfaction, use "at present", "these days", etc.
 - For experienced affect, recall period should not be too long (e.g. within 24 hours)

Some Suggestions (cont.)

- 3. Use numerical scales (up to 11-point) for single-item satisfaction questions
- 4. Use bipolar scales for satisfaction, and unipolar scales for affect

A unipolar scale:

0	1	2	3	4	5	6	7	8	9	10
Not at all happy					(Moderately happy)					Completely happy
A bij	polar sc	ale:								
0	1	2	3	4	5	6	7	8	9	10
Completely unhappy					(Neither happy nor unhappy)					Completely happy

Some Suggestions (cont.)

- 5. Locate SWB questions as early on in the survey as possible
- 6. Start with the more general questions, then proceed to the more specific
 - E.g. ask general life satisfaction question before domainspecific satisfaction questions
 - Schwarz et al. (1991):
 - When marital satisfaction is asked <u>before</u> life satisfaction, correlation = 0.67
 - When marital satisfaction is asked <u>after</u> life satisfaction, correlation = 0.32

Some Suggestions (cont.)

- 7. When comparing SWB data, ensure consistency w.r.t.:
 - Proportion of weekday/weekend measurement
 - Survey timing (w.r.t. seasons and holiday periods)
 - Absence of major news events or extreme weather
- 8. Stage SWB data collection over multiple days and throughout the year where possible

Question Construction

- Question wording
 - SWB questions can in general be answered in less than 30 seconds, suggesting no difficulty in comprehension
 - Use multiple-item scales where possible to reduce the impact of variation in how respondents understand SWB questions

Question Construction (cont.)

- Length of the reference period
 - Different reference periods may tap different SWB constructs (e.g. one-year period → evaluative; one-day period: current affect)
 - Long periods of recall may induce recall bias
 - Gallup uses "at present" and World Values Survey uses "these days" for evaluative measures
 - For experienced affect, recall period should not be too long (e.g. within 24 hours)

Response Scale Length and Labeling

- Evaluative measures with numerical scales
 - Longer scales (up to a 11-point scale) are usually better
- Affective and eudaimonic measures
 - A smaller number of response scales have been used (e.g. 5 or 7) multi-item measures but no evidence as to the most optimal scale length
- Scale labeling
 - Anchors matter and affect the response frame (preferable to use most extreme response possible: e.g. always/never)
 - Numerical labeling is advantageous for single-item measures (longer scale), for respondent burden, and for comparability

Response Scale (cont.) Unipolar vs. Bipolar Measures

A unipolar scale:

0	1	2	3	4	5	6	7	8	9	10
Not at all happy					(Moderately happy)					Completely happy
A bipolar scale:										
0	1	2	3	4	5	6	7	8	9	10
Completely unhappy					(Neither happy nor unhappy)					Completely happy

- Evaluative measures tend to use bipolar scales, while affective measures tend to use unipolar scales
- Not clear if respondents fully understand the unipolar scales

Question Context and Order

- Earlier questions in a survey may create a context that affects responses to subsequent questions \rightarrow priming
 - e.g. a question about unemployment or bereavement directly before a SWB question would set a negative tone
 - This could create undue influence of certain SWB determinants/events
 - E.g. Schwarz et al. (1991):
 - When marital satisfaction is asked before life satisfaction, correlation = 0.67
 - When marital satisfaction is asked after life satisfaction, correlation = 0.32

Question Context and Order (cont.)

- Locate SWB questions as early on in the survey as possible
- Start with the more general questions, then proceed to the more specific
 - e.g. general life satisfaction question before domainspecific satisfaction questions
- Use introductory text / transition questions to help reduce context effects
- Reduce redundancy in SWB questions
- When including domain-specific satisfaction, try to include a wide range of domains

Survey Source and Introductory Text

- Introductions and framings may lead to certain patterns of response (e.g. socially desirable responding or demand effects)
- The objectives of the overall survey and the manner in which it is administered may affect SWB responses
- Try to embed SWB questions in larger national household surveys rather than in surveys specifically focusing on SWB to reduce the above biases

Wider Survey Context

- Day-to-day events
 - Random daily events should not have much influence
 - Major events (economy, politics, public holidays) may impact SWB more systematically
- Day of week
 - Differences in patterns of activity
- Seasonal effects and weather

Wider Survey Context (cont.)

- When comparing SWB data, ensure consistency w.r.t.:
 - Proportion of weekday/weekend measurement
 - Survey timing (w.r.t. seasons and holiday periods)
 - Absence of major news events or extreme weather
- Stage SWB data collection over multiple days and throughout the year where possible

Appendix 2: SWB Modeling Issues

SWB Modeling Issues

- Omitted variables
- Reverse and two-way causality
- Adaptation
- Comparison / reference points
- Interpersonal comparisons of SWB data and cultural differences

Omitted Variable Problem

- SWB modeling is subject to omitted variable bias because many factors contribute to SWB
- Example:
 - Failure to find an effect of income growth on SWB despite cross-sectional relation between income and SWB
 - Potential omitted variables:
 - Changes in relative income
 - Changes in other determinants such as health, social connections, perceived freedom, etc.

Omitted Variable Problem (cont.)

- Omitted variables can cause endogeneity
- Use instrumental variables where possible to identify them

Reverse and Two-Way Causality

- Limited ability to make causal inferences in cross-sectional data
 - E.g. are married people happier, or are happier people more likely to be married?
 - Domain vs. overall SWB
- Two-way or reverse causality can cause endogeneity if not modeled
- Best to use panel data

Adaptation

- Measure SWB at different points in time (e.g. before, during, and after events of interest) and model the effects of adaptation explicitly
- Example: mode choice
 - SWB during routine travel
 - SWB during mode choice decision
 - SWB after mode choice decision

Comparison / Reference Points

- Measure the comparison group if possible for the context of interest
- Include comparison effects in the SWB model

Comparison (cont.)

Example – Commuting to Work (Abou-Zeid and Ben-Akiva, 2011)

Reference Group

Please think about a person in your metropolitan area and whose commute you are familiar with. This person could be your friend, colleague, neighbor, family member, etc.

How is this person related to you?

- □ Friend
- \Box Colleague at work
- □ Neighbor
- □ Relative
- □ Family member
- □ Other acquaintance

Comparison (cont.)

Example – Commuting to Work (Abou-Zeid and Ben-Akiva, 2011)

SWB Comparison with Reference Group

On average, compared to this person's commute, your commute is:

- □ Much more stressful
- □ Somewhat more stressful
- □ As good/bad as his/her commute
- □ Somewhat less stressful
- Much less stressful
- \Box Don't know

Comparison (cont.)

Example – Commuting to Work (Abou-Zeid and Ben-Akiva, 2011)

Attributes of Reference Group

How does this person commute to work?

- □ Car
- \Box Bus or train
- \Box Walk or bike
- \Box Don't know
- □ Other [Please specify.....]

On average, compared to this person's commute, your commute takes:

- \Box Much more time
- \Box Somewhat more time
- \Box Almost the same time
- \Box Somewhat less time
- \Box Much less time
- □ Don't know

Interpersonal Comparisons

- Issue of interpersonal comparisons
 - Individuals may interpret and use the SWB scale differently

	<u>SWB</u>	
John	4/10	Is Amy indeed happier than John,
Amy	6/10	or is it a matter of scale use?

- Common to use SWB survey responses as cardinal and report averages
- Individual trends and some forms of regression do not assume cardinality

Interpersonal Comparisons (cont.)

- Cardinal measure:
 - Net affect = average positive affect average negative affect
- Ordinal measure:
 - U-index = proportion of time that a person spends in activities where dominant feeling is negative

Interpersonal Comparisons (cont.) Affect Balance and U-Index

	Percentage	Time spent	Net	U-Index	
Activity	of sample	(hours)	affect		
Intimate relations	12	0.23	4.83	0.040	
Socializing after work	49	1.14	4.15	0.073	
Relaxing	77	2.17	3.96	0.078	
Dinner	69	0.81	3.94	0.074	
Lunch	67	0.57	3.91	0.078	
Exercising	16	0.22	3.85	0.088	
Praying/worship	23	0.45	3.78	0.105	
Socializing at work	41	1.12	3.78	0.100	
Watching TV	75	2.19	3.65	0.095	
Phone at home	43	0.93	3.52	0.126	
Napping	43	0.89	3.35	0.131	
Cooking	63	1.15	3.27	0.138	
Shopping	30	0.41	3.23	0.157	
Computer (non-work)	29	0.51	3.22	0.165	
Housework	49	1.12	2.99	0.161	
Childcare	36	1.10	2.99	0.199	
Evening commute	63	0.61	2.77	0.209	
Working	100	6.89	2.68	0.211	
Morning commute	68	0.47	2.09	0.287	
Cultural Differences

- SWB ratings may differ across cultures for reasons related to true differences or to cultural bias and response styles
- Can use fixed effects models or other approaches to model differences between cultures

Appendix 3: SWB and Valuation

SWB and Valuation

 SWB data has recently been used in valuation studies that involve non-market goods

- E.g. urban regeneration, marriage, unemployment, ...

- Life satisfaction approach:
 - Basic premise: SWB reflects utility better than preference satisfaction
 - Regress life satisfaction against the non-market good, income, and other explanatory variables
 - The value of the non-market good is the change in income needed to maintain a constant level of satisfaction

SWB and Valuation (cont.)

• $LS = \alpha + \beta_1 M + \beta_2 Q + \beta_3 X + \varepsilon$

(LS = life satisfaction; M = income; Q = non-market good)

•
$$WTP_{LS} = \frac{\beta_2(Q_2 - Q_1)}{\beta_1}$$

Example: Value of Urban Regeneration (Dolan and Metcalfe, 2008)

- Urban regeneration scheme in UK
 - Improvement of house features (e.g. roofs) and property walls, road resurfacing, and improved street lighting
- Quasi-experiment:
 - One treatment neighborhood and one control neighborhood used in the analysis

	Dependent: Life satisfaction	(1)		(2)		(3)	
		Coeff.	S.E.	Coeff.	S.E.	Coeff.	S.E.
Non-market	Regeneration	0.738***	0.283	0.623**	0.283	0.652	0.427
good	Ln(Household income)	0.704**	0.305	0.629**	0.304	0.729***	0.197
	Gender	0.036	0.318	0.073	0.313	0.271	0.273
	Age	-0.150*	0.080	-0.140*	0.079	-0.116	0.083
	Age ²	0.001	0.001	0.001	0.001	0.001	0.001
	Married	0.609	0.383	0.602	0.377	0.571	0.214
	Cohabiting	-0.776	0.568	-0.691	0.560	-0.764	0.514
	Divorced	0.128	0.499	-0.109	0.499	-0.118	0.641
	Separated	-1.818	1.139	-1.361	1.134	-1.193	0.723
	Widowed	-0.596	1.125	-0.503	1.107	-0.569	0.379
	Employed part-time	0.020	0.424	0.025	0.417	0.059	0.515
	Self-employed	2.651***	0.720	2.291***	0.720	2.289***	0.466
	Unemployed – looking for work	-1.314*	0.687	-1.394**	0.676	-1.415*	0.616
	Unemployed – not looking for work	-0.182	0.491	-0.305	0.486	-0.246	0.572
	Student	0.916	0.682	0.877	0.671	0.991**	0.405
	Retired	0.334	0.707	0.492	0.697	0.579	0.425
	Speaking to family	0.126	0.197	0.157	0.196	0.165	0.218
Indirect	Speaking to friends	0.421**	0.196	0.447**	0.196	0.467**	0.184
effects	Speaking to neighbours	0.096	0.148	0.068	0.146	0.059	0.176
	Crime			-0.241*	0.132	-0.239***	0.059
	Noise from neighbours			-0.210*	0.115	-0.219**	0.080
Comparison	Ln(Reference income)					-1.755	1.204
effect .	Constant	0.169	3.625	1.160	3.593	16.904	11.182
	Ν	185		185		185	
	Adjusted R ²	0.33		0.36		0.37	
	Average household income	£18,986		£18,986		£18,986	
WTP _	IC for regeneration	£35,200		£32,100		£27,500	

Instrumented Regression

- Income may be endogenous
- Instrumental variables:
 - Whether an individual's partner is in employment
 - Whether an individual is in rented accommodation

Dependent: Life satisfaction	(1)		(2)	
	Coeff.	S.E.	Coeff.	S.E.
Regeneration	0.708**	0.290	0.811	0.531
Ln(Household income)	2.449***	0.891	2.418***	0.839
Other controls	•			
First stage F statistic	12.20		6.05	
First stage partial R ²	0.13		0.10	
Over-identification test	0.707	(p=0.401)	0.444	(p=0.505)
Average household income	£18,943		£18,986	
Income compensation	£6,350		£7,600	

Life Satisfaction Approach

- LS approach to valuation can be used as a complement to preference-based approaches
 - Does not depend on rationality axioms of preference-based approaches
 - Less strategic responding
- WTP values estimated tend to be high
 - Difficulty in properly handling all statistical issues
 - Unknown time duration of life satisfaction measures